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PROBLEM

Years ago, my son, then a little boy, was playing with some
coloured blocks. There were two of each colour, and one day 1
noticed that he had placed them in a single pile 8o that between the
red pair there was one block, two between the blue pair, and three
between the yellow. I then found that by a complete rearrangement
1 could add a green pair with four between them,

Clearly this is a perfectly g&neml problem. For convenicnce we
may denote the blocks by a pair of I’s, a ?&zx of 2's ete. By experi-
menting with pieces of card cut as shown in the diagram, I have
s&%&me{i the following solutions for n pairs; the other cases with

< 15 1 do not believe to be soluble. Can anyone produce a
t%@ﬁ?@fzmi treatment?

n== 3: 312132

n== 4: 41312432

ne== 7: 171206425374835

n= 8: 3181375204285746

n==11: 121e25718305637e481694

no= 12: ?’f&%@iﬁ%’?%ﬁ&?ﬁ?@%ﬁ%izwz

n == 15: FHe975{TiR6579¢0 F68:Tf|41312432
t=10,¢e= 11, T = 12, Gm« 13 f== 14, F = 15.

It will be noticed that the last two cases contain the arrangements
for n = 3 and 4 as separate groups,” whw%x can be placed at either end.

B ¥

G
=

C. DupLey LANGFORD

Problem. (1958). The Mathematical Gazette,
42(341), 228-228. https://doi.org/10.2307/3610395
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ON LANGFORD’'S PROBLEM (1)
By C. J. Pripay

For numbers a >b > 1 we shall denote by (a, b) the set of
numbers b, b + 1, ..., a. We shall say that a set S of numbers is
perfect if there exists a sequence containing just one pair of each of
the numbers in S, satisfying the condition: for every number r in
the set, the two r’s are separated by exactly r places, and having no
gaps (a perfect sequence).

Example 1. (4, 1) is perfect: 41312432,

We shall say that S is hooked if there exists a sequence containing
the same numbers and satisfying the same condition, but having a
gap one place from one end (a hooked sequence).

Ezxample 2. (2, 1) is hooked: 121#2.
Example 3. (8, 2) is hooked: 8642752468357 »3.

We note that (by juxtaposition of the corresponding sequences)
if two sets S, and S, without common elements are both perfect
then so is their union S, and if one is perfect and the other hooked
then S is hooked; while if both are hooked then the corresponding
sequences can be ‘‘hooked together” and so S is perfect.

Example 4. (8,2) and (1, 1) are hooked, so (8,1) is perfect:
8642752468357131.

Langford’s problem (Math. Gaz. (1958), p. 228) may be formulated
* The writing of this paper is part of the work made dpouxble by a
eve

from the Carnegie Corporation of New York for the lopment o
author’s approach to mathematics.

C. J. Priday, & Roy O. Davies. (1959). On Langford’s
Problem. 7The Mathematical Gazette, 43(346), 250-255.
https://doi.org/10.2307/3610650
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as follows: for what natural numbers a is (a, 1) perfect? We shall
prove the

THEOREM. For every m@mi number a, (a, 1) 1s either perfect or
hooked.

We shall say that 8 is looped if there exist two sequences, each
containing the same numbers and satisfying the same condition as
before; one having just one gap, two places from one end, and the
other having two gaps, one place and two places from one end.

Ezample 5. (4, 1) is looped:

13142324; 2412134 #43.

Ezample 8. (b, 2) is looped:

425324 +35; 3425324 % 5.

Ezample 7. (8, 1) is looped.:

567 8&35184?382:32 .567841516472832%#3.

We note that if two sets S, and S, without common elements
are both looped then their union is perfect (a sequence of one kind
for 8, and of the other kind for §, can be “looped together”).

Oar result is based on the

LevyMa. For every natural number a, (3a, a) i8 both perfect and
looped, (3a + 2, a) i3 hooked and (3a + 4, a) is looped. .

- Proof. We exhibit sequences of the required types (the arrange-
ments simplify when a = 1 or 2 but as is easily verified they still
exist). The semi-colons are inserted to make the structure more
visible,
3¢,3a — 2,...,a; 3a —1,3a —3,...,a 4+ 1;

a,a+2, ..,3 a+1a+3,..,3z 1.

2¢ +2,2a+3,..,3; a,a+1,...,2a —1; 2a + 1,a,2a;
a+1,2¢a+2,a+ 2, ..., 2a — 1, 3a; *?2@“%”1’2‘3’*
2a + 2,24+ 3,...,3a; a,a -+ 1, ..., 2a
a,2a 4+ 1,a+41,...,3a,2a; % % 2a + 1,
3a-+42,3a,..,a4, 3a+1,3a—1,...,a +3;.
a,a+2, ..,3a+2,a+1,a-4+3,..,3+1; s,a+ 1.
3a + 4,3¢a+2,...,a; 3a +3,3a+1,...,a + 5;
{;;3{:%2“"?3:3%&4; a+3,a-+1;
a+6a+7,..,3a+3%a+1,a+ 3.
3a+4,3+2,...,a;3a+3,3¢a+1,...,a+5aa+2,...,3a + 4;
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Proof of the Theorem. Since every integer is congruent to 0, 2 or
4 modulo 3, the set (a, 1) can be decomposed into sets to which the
Lemma applies, possibly together with (1, 1), {2, 1) (both hooked)
or {4, 1) (perfect and looped).

Ezample

(341, 1) = (341, 113) hooked + (112, 36) looped - (35, 11) hooked
+ (10, 2) looped + (1, 1) hooked.

The set (341, 1) is hooked, because the two looped sets may be
combined to form a perfect set and two of the hooked sets may be
combined to form another, and the resulting two perfect sequences
may be juxtaposed with the remaining hooked sequence to form a
hooked sequence for (341, 1).

In general, let {a, 1) be decomposed into h hooked sets, I looped
sets and p sets both perfect and looped. If!is even, then the looped
sets may be combined in pairs to give perfect sets, and the same may
be done with all or all but one of the hooked sets (depending on
whether 5 is even or odd), and so (a, 1) is perfect or hooked. If
lis odd but p # 0, then by using one of the perfect-and-looped sets
as a looped set we get the same result, This leaves the case
where ! is odd and p = 0.

The decomposition of (g, 1) must then end in one of the five ways
considered below, and we show in each case that (possibly after the
decomposition has been modified) one of the looped sets can be
eliminated, leaving an even number.

M) (8, 2) hooked + (1, 1) hooked.

Replace by (8, 1), which is looped (example 7), and combine this
with & looped set to give a perfect one.

(ii) (10, 2) looped + (1, 1) hooked.
But (10, 2) is also perfect (we write 0 for 10):
647850462572839503.
{iii) {2, 1) hooked.

Replace by (2, 2) + (1, 1) hooked; the sequence 2e¢2 may be
combined with a looped one to give a perfect sequence.

(iv) {6, 1) hooked.

Replace by (5, 2) + (1, 1) hooked. Since (5, 2) is looped (example
6), it may be combined with a looped set to give a perfect one.

(v) (7,1) looped.
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But (7, 1) is also perfect: 17126425374635.

The proof is now complete. We have not proved two things which
appear to be true: (i) no set can be both perfect and hooked; (i)
the condition for (a, 1) to be perfect is that a is of the form 4m — 1
or 4m.t

C.J.P

ON LANGFORD'S PROBLEM (II)
By Roy 0. Davies

The problem is to arrange the numbers 1, 1, 2, 2, ..., #, n in a
sequence (without gaps) in such a way that for r =1,2, ..., 2
the two r's are separated by exactly r places; for example

41312432,

Priday has shown in the preceding paper that for every n there exists
either such a perfect sequence (as he calls it) or else a hooked sequence
with a gap one place from one end; for example

34513142642,

Here we shall show that, as Priday conjectured, the perfect sequence
exists only if » is of the form 4m — 1 or 4m, and the hooked solution
otherwise. The method is Bang’s, as used by Skolem} in solving
a problem equivalent to Langford’s with a pair of zeros added.
Skolem also gave for his problem explicit perfect sequences for the
two favourable cases n = 4m — 1, 4m, and we shall exhibit similar
but more complicated sequences for both the perfect and hooked
ases in Langford’s problem. We thus have an alternative proof
of Priday’s interesting result. »

TaEoreM 1. If the numbers 1, 1,2, 2, ..., n, n can be arranged in a
perfect sequence then n is of the form 4m — 1 or 4m, where m is
an integer, while if they can be arranged in a hooked sequence then
n 15 of the form 4m — 3 or dm — 2. )

Proof. Perfect Sequence. Let the first 7 in the sequence be in the
a,th position; then the other is in the position a, + r + 1, and the
numbersa,, a, + 7+ 1(r=1,2, ..., n) are the numbers 1, 2, ..., 2n
in some order, Therefore

] Zn
2 (20, +r+1)=3i=nn+1),
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whence one deduces that (3n? — n)/4 equals ¥ a, and is thus an
integer. It follows that » is of the form 4m — 1 or 4m.

Hooked Sequence. With the same notation as before, the numbers
a, a,+ 7 1{r==1,..,n) may be taken to be the numbers
1,2,...,2n — 1,2n 4 1 in some order. Therefore |

i
22, +r+)=n2n+1)+1,
Foul
whence (3n% — 7 + 2)/4 equals ¥ a, and is thus an integer. It
follows that » is of the form 4m — 3 or 4m — 2.

RemARk. Similar arguments show more generally that if a pair of
each of some » distinct numbers can be arranged in an perfect
sequence (or either kind of “looped sequence” as considered by
Priday) then # is of the form 4m — 1 or 4m, while if they can be
arranged in a hooked sequence then n is of the form 4m — 3 or
im — 2,

THEOREM 2. The numbers 1,1,2,2, ..., n, n can be arranged in a
perfect sequence if m is of the form 4m — 1 or 4m, and in a hooked
sequence otherwise,

Proof. We exhibit the required sequences in the four cases
Each consists mostly of strings of consecutive odd or consecutive
even numbers and all but the two extreme terms of each such string
are replaced by dots below. Suitably interpreted, the sequences
are valid, although they degenerate, for m = 1, 2.

%

The case n = 4m,
4m — 4, ...,2m,4m —2,2m — 3, ..., 1,4m — 1, 1, ..., 2m — 3,
2m, ..., 4m — 4, 4m, 4m — 3, ..., 2m + 1, 4m — 2, 2m — 2,
vy 2,2m—1,4m~—1,2, ...,2m —2,2m + 1, ..., 4m — 3,
2m — 1, 4m.

The case n = 4m — 1.

4m —4, ....2m, 4m — 2,2m — 3, ..., 1,4m — 1,1, ..., 2m — 3,
2m, ..., 4m — 4, 2m — 1, 4m — 3, ..., 2m + 1, 4m — 2,
2m — 2, ..., 2,2m —1,4m — 1,2, ..., 2m — 2, 2m + 1, ...,
4m — 3. |

The case n = 4m — 2,
1, 2m — 3, 1, 4m — 38, ..., 2m — 2, 2m — 5, ..., 3, 4m — 3,
2m —3,4m —6,3,...,2m — 5, 4m — 4, 2m — 2, ..., 4m — 8§,

A £ Aaes -4 [1 JO k JEE 3 YN A [ TR PN F- I DN 3,
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The case n = 4m — 3.

4m — 86, ..., 2m — 2, 4m — 5, 2m — B, ..., 1, dm — 4, 1, ...,
2m —5,2m — 2, ..., 4m — 6, 4m — 3, 4m — 7, ..., 2m —1,
4m — 5, 2mm4 vy 2, 2m — 3, dm — 4, 2, ..., 2m — 4,
2m — 1, ...,4m — 7, zm 3, s, 4m — 3.

£y adding a pair of adjacent zeros at one end, we obtain
an alternative solution to the previously mentioned problem
of Skolem, and a solution to a problem stated by him (but not solved)
in & more recent paper.}

It would be interesting to know roughly how many different
solutions of Langford’s problem exist for large n. They are sur-
prisingly numerous even for n = 7: namely, 25 distinct perfeei:
sequences, not counting as distinct a sequence and the same one in
reverse order. For n = 3 and n = 4 there is only one solution.

The University, Leicester ' R. 0. D.
Editorial Note: Solutions to parts or the whole of Langford’s

problem have also been submitted by F. Downton, R. Sibson, R, A,
Bull and J. R. A. Copper.

s
e

GLEANINGS FAR AND NEAR

1833. The post of Lord Great Chamberlain has existed for some 850
years; his is the only hereditary office that can go through the female
line. Because of one or two disputed claims, three families share the
office in rotation; or, rather, the Cholmondeleys have every alternate
reign, the Ancasters and Caringtons every third.—The Observer.
3 November 1857. [Per Mr. R. F. Wheeler.]

1984. The first Russian satellite ... weighed 184 1b, nearly ten orders
of magnitude heavier than the scheduled American vehicle.— Discovery.
November 1957. [Per Mr. R. F. Wheeler.]

1936. Do you know how many ways there are to play the first fﬂﬁ?
moves in a game of chess? Each player has sixteen units at his disposal,
Offhand you might say there are 100 or 200 different ways to play these
units in the first four moves. Yet the mathematicians tell us that the
number of possible ways is no less than 318,979,654,000! But that's
nothing. By the time you get to the problem of how many different
ways there are to play the first ten moves, the number has risen to the
staggering figure of 169,518,829,100,644,000,000,000,000,000!! Even
if the experts have dropped a logarithm or two, and are out by a fow
billion possibilities or so, they have succeeded in making their point:
chess can be a mighty complicated game. Yet for at least 800 years
there have been experts who could play chess blindfoldi—From an
article on blindfold chess in the American magazine “‘Chess Review'
1951, [Per Mr. W. H, Cozens.]




Mathematical Games

This page gives the exact text of Martin Gardner's columns relating to Langford's Problem.
Note that he revisits the problem in Mathematical Magic Show, published by Alfred A. Knopf,
ISBN.0-88385-449-X, first-and second editions.

November 1967, pages 127-128

6. Many years ago C. Dudley Langford, a Scottish Mathematician, was watching his littie boy

play with colored blocks. There were two blocks of each color, and the child had piled six of
them in a column in such a way that one block was between the red palr, two blocks were
between the biue pair and three were between the yellow pair. Substitute digits 1, 2, 3 for the
colors and the sequence can be represented as 312132,

This Is the unique answer (not counting its reversal as being different) to the problem of

arranging the six digits so that there is one digit between the 1's and there are two digits
between the two 2's and three digits between the two 3's.

Langford tried the same task with four pairs of differently colored blocks and found that it too
had a unique solution. Can the reader discover it? A convenient way to work on this easy
probiem Is with eight playing cards: two aces, two deuces, two threes and two.fours. The
object is to place them in a row so that one card separates the aces, two cards separate the
deuces, and so on.

There are no solutions to "Langford's problem”, as it is now called, with five or six pairs of
cards. There are 25 distinct solutions with seven pairs. No one knows how to determine the
number of distinct solutions for a given number of pairs except by exhaustive trial-and-error
methods, but perhaps the reader can discover a simple method of determining if there js a
solution. Next month | shall make some remarks about the general case and cite major
references.

December 1967, pages 131-132

The unique solution to Langford's Problem with four pairs of cards is 41312432, lt can be
reversed, of course, but this is not considered a different solution. if n is the number of pairs,
the problem has a solution only if n is a multiple of four or one less than such a multiple.

Ga{dﬂer cites references for Langford, Priday, Davies, Gillesple and Utz, and Nnckemars as

Mathematical Games (dialectrix.com)

-~

httos://dialectrix.com/langford/MG.html




11. ,
Combinatorische Aufgabe.

(Von Herrn Professor Dr. J. Steiner zu Berlin. )

@) Weiche Zahl, N, von Elementen hat die Eigenschaft, dafs sich
die Elemente so zu dreien ordnen lassen, dafs je zwei in einer, aber nur in
einer Verbindung vorkommen? Wie viele wesentlich verschiedene Anordnungen,
d. h. solche, die nicht durch eine blofse Permutation der Elemente auseinander
hervorgehen, giebt es bei jeder Zahl?

6) Wenn ferner die Elemente sich so zu vieren verbinden lassen
sollen, dafs jede drei freien Elemente, d.h. solche, welche nicht schon einen
der vorigen Dreier («.) bilden, immer in einem aber nur in einem Vierer
vorkommen, und dafs auch keine 3 Elemente eines solchen Vierers einem der
vorigen Dreier angehoren; so entsteht daraus keine neue Bedingung fir die
Zahl N.

- ¢) Sollen die Elemente sich weiter so zu Fiinfern combiniren lassen,
dafs je vier unter sich noch freie Elemenie, d.h. welche keinen der zuvor
gebildeten Vierer (&.) ausmachen, noch einen der friheren Dreier (4.) ent-
halten, immer in einem, aber nur in einem Finfer vorkommen, und dafs ein
solcher Finfer keinen der schon gebildeten Dreier noch Vierer enthalt: welche
neue Modification erleidel dann die Zahl N?

d) Und sollen die Elemente sich ahnlicherweise so zu Sechsern ver-
binden lassen, dafs zu je funf unter sich noch freien Elementen ein bestimmies
sechstes gehort, aber keiner der so -gebildeten Sechser einen der fraheren
Dreier oder Vierer oder Finfer enthill; welche Beschrankung erleidet dann
die Zehl N? '

¢) Eben so sollen Siebner gebildet werden, so-dafs zu je sechs unter
sich freien Elementen ein bestimmtes siebentes gehort, aber ein solcher Siebner
weder einen der vorigen Dreier, noch Vierer, noch Fiinfer, noch Sechser ent-
hilt. Und so soll fortgefahren werden, bis etwa far die Zahl N die Unmoglichkeit
hoherer Verbindungen dieser Art eintritt, Zudem soll auf jeder Stufe die allge-
meine Form der Zahl N, fir welche die geforderten Combinationen maglich

sind, angegehen, so wie umgekehrt gezeigt werden, ob bei jeder Zahl von der
Crelle’s Journal f. d. Math. Bd. XLV, Heft2, 24

Combinatorische Aufgabe, Steiner, J., J. reine angew.

Math., 1853, v45, 181-2, (Gesammelie Werke I, Berlin,
1882, 437-438) ‘
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Mathematical Magic Show, Page 76

6. LANGFORD'S PROBLEM

MANY YEARS AGO C. Dudley Langford, a Scottish mathematician, was watching his little boy play with colored blocks. There were two blocks of 3
each color, and the child had piled six of them in a column in such a way that one block was between the red pair, two blocks were between
the blue pair, and three were between the yellow pair. Substitute digits 1, 2, 3 for the colors and the sequence can be represented as 312132.

This is the unique answer (not counting its reversal as being different) to the problem of arranging the six digits so that there is one digit »
between the 1's and there are two digits between the e's and three digits between the 3's.

Langford tried the same task with four pairs of differently colored blocks and found that it too had a unique solution. Can the reader discover !
it? A convenient way to work on this easy problem is with eight playing cards: two aces, two deuces, two threes, and two fours. The object
then is to place them in a row so that one card separates the aces, two cards separate the deuces, and so on.

There are no solutions to “Langford's problem”, as it is now called, with five or six pairs of cards. There are 26 distinct solutions with seven
pairs. No one knows how to determine the number of distinct solutions for a given number of pairs except by exhaustive trial-and-error ;
methods, but perhaps the reader can discover a simple method of determining if there is a solution. 3

Mathematical Magic Show, pages 77-78, (some answers)

6. The unique solution to Langford's problem with four pairs of cards is 41312432. It can be reversed, of course, but this is not considered a
different solution. \

If n is the number of pairs, the problem has a solution only if n is a multiple of 4 or one less than such a multiple. C. Dudley Langford posed his
problem in The Mathematical Gazette (Vol. 42, October 1958, page 228). For subsequent discussion see C. J. Priday, "On Langford's Problem
(1)", and Roy 0. Davies, "On Langford's Problem (I1)", both in The Mathematical Gazette (Vol.43, December 1959, pages 250-55).

The 26 solutions for n = 7 are given in The Mathematical Gazette (Vol. 55, February 1971, page 73). Numerous computer programs have
confirmed this list, and found 150 solutions for n = 8. E. J. Groth and John Miller independently ran programs which agreed on 17,792
sequences forn = 11, and 108,144 forn = 12.

R. S. Nickerson, in "A Variant of Langford's Problem", American Mathematical Monthly (Vol. 74, May 1967, pages 591-95), altered the rules so ;
that the second card of a pair, each with value k, Is the kth card after the first card; put another way, each pair of-value k is separated by k-1 i
cards. Nickerson proved that the problem was solvable if and only if the number of pairs is equal to 0 or 1 (modulo 4). John Miller ran a :
program which found three solutions for n=4 (they are 11423243, 11342324, and 41134232); five solutions for n=5; 252 solutions for n=8; and
1,328 for n=9.

»

Frank S. Gillespie and W. R."Utz, in "A Generalized Langford Problem", Fibonacci Quarterly (Vol. 4, April 1966, pages 184-86), extended the
problem to triplets, quartets, and higher sets of cards. They were unable to find solutions for any sets higher than pairs. Eugene Levine, writing
in the same journal ("On the Generalized Langford Problem", Vol. 6, November 1968, pages 135-38), showed that a necessary conditionfora
solution in the case of triplets is that n (the number of triplets) be equal to -1, 0, or 1 (modulo 9). Because he found solutions forn =9, 10,17,
18, and 19, he conjectured that the condition is also sufficient when n exceeds 8. The nonexistence of a solution for n=8 was later confirmed
by a computer search.

Levine found only one solution for n=9. | know of no other solution; perhaps it is unique. Readers may enjoy finding it. Take from a deck all the
cards of three suits which have digit values (ace through nine). Can you arrange these 27 cards in a row so that for each, triplet of value k
cards there are k cards between the first and second card, and k cards between the second and third? It is an extremely difficult combinatorial
3

. puzzle.

D. P. Roselle and T. C. Thomasson, Jr., "On Generalized Langford Sequences”, Journal of Combinatorial Theory (Vol. 11, September 1971,
pages 196-99), report on some new non-existence theorems, and give one solution each for triplets when n = 9, 10, and 17. So far as | am I
aware, no Langford sequence has yet been found for sets of integers higher than three, nor has anyone proved that such sequences do or do
[ not exist. f

Gardner, M. (1990). Spectrum: Mathematical magic show.
Washington, D.C., DC: Mathematical Association of
America.




